Ferrari módszer - matematikai enciklopédia - Enciklopédia és Szótár
- módszer csökkenti a egyenlet megoldása a 4. fokú, hogy a megoldás a köbös és két másodfokú egyenlet; Ferrari talált L. (L. Ferrari, Publ. 1545). F. m. 4. egyenlet y 3 + Ay 2 + által + CY + d = 0 a következő. Révén a szubsztitúciós y = ez az egyenlet csökkenti egyenlet
nem tartalmaz viszonyban x 3. Bemutatjuk a kiegészítő paraméter bal oldalon az egyenlet (1) lehet transzformálni a következő képlettel
Ezután a kiválasztott értéket, hogy a kifejezés szögletes zárójelben egy tökéletes négyzet. Ehhez a diszkrimináns másodfokú polinom nulla. Ez adja a harmadfokú egyenlet
Let - egyik oka ennek az egyenletnek. Amikor egy polinom szögletes zárójelben (2) van egy kettős gyökere
ami az egyenlet
Ez az egyenlet a 4. fokozat van osztva két másodfokú egyenlet. A gyökerek ezen egyenletek a gyökerei az egyenlet (1).
Irod [1] Kurosh AG Course of Higher algebra, 11 ed. M. 1975.
IV Proskuryakov.
Encyclopaedia of Mathematics. - M. szovjet Encyclopedia Vinogradov 1977-1985