Megoldása rendszerek trigonometrikus egyenletek, tartalom platform
Megoldás trigonometrikus egyenletek
Megoldás trigonometrikus egyenlet nem igényel speciális technikát vagy a tudás is a program. Azonban ezeket a feladatokat kapcsolatos néhány konkrét nehézségeket. Ezek közül az egyik az a tény, hogy ezek a rendszerek általában egy végtelen számú megoldást. Ezért a helyes válasz rekord, kiválasztja a megfelelő megoldásokat, és így tovább. D. nehéz szükség van-e különböző esetekben, vagy megoldani támogatást egyenlőtlenség.
Általában az a megoldás rendszerek vagy közvetlenül megszünteti az egyik ismeretlen, azt kifejező át a másik bármely egyenlet a rendszer, vagy próbálja meg csökkenteni a trigonometrikus rendszer egy olyan rendszer algebrai egyenletek sikeres bevezetése új vagy ismeretlen, hogy átalakítsa az egyenletrendszert.
A legtöbb esetben, az egyenletrendszert lehet csökkenteni képest rendszerek Cozy, Cos (x + y), Sin (x + y) és r. P ..
Például, ha mi adta az eredeti rendszer rendszer formájában
ez egyenértékű a lineáris rendszer (1)
Hely könnyű megtalálni (2)
Itt kell hangsúlyozni, hogy nagyon fontos, hogy írjon különböző egész paraméterek megoldására egyszerű egyenletek függetlenek, azaz a rendszer (1) száma n és k kell jelölni egy másik levelet. Ha használják ugyanazt a levelet, akkor elvész végtelen sok megoldást, nevezetesen a párok halmaza, egyenletek által meghatározott (2), amely a saját meghatározás.
Egy másik ötlet, amelyet fel lehet használni megoldására a rendszerek, ez egy kifejezése egy változó egy másik és egy másik szubsztituens az egyenletben. Ezt meg lehet tenni csak abban az esetben, ha az egyik változó kifejező másik felett egyszerűen nem sikerül.
Például, ha azt találtuk, és azt akarjuk, hogy helyettesítse x kifejezésében keresztül, akkor két esetet kell megvizsgálni: 1) - páratlan, vagyis az egyes Z: .. Aztán.
2) - páros, azaz néhány: akkor ... Ha nehéz megérteni, hogyan lehet viselkedni, trigonometrikus függvények helyettesítésével, akkor jobb, ha nem kell alkalmazni. Vegyünk néhány fajta trigonometrikus egyenletek és rámutatnak a leggyakoribb módszerek megoldására alapuló rendszerek általános elmélete megoldások rendszerek egyenletek.
I.Svedenie rendszerek formájában
Az általunk használt átalakítás megőrzi egyenértékűségének rendszerek:
Hozzáadása egyenletek (1) és (2), és kivonva számukra, hogy egy olyan rendszer, amely egyenértékű egy adott