Hatása használati minták, rajzok, ábrák a formáció egy képzési Zún fiatalabb
A megtett távolság amelyet a gyalogos, jelölt szegmens. Hány órát volt a gyalogos útvonal?
Mi mást mondani gyalogosok?
Hány egyenlő részre van osztani a szegmenst?
1 óra 1 óra 1 óra
Most nézd meg alaposan a rajzot, és azt mondják, hogy hány kilométert egy gyalogos halad óránként? (4 km) Hogyan találjuk meg? (12: 3) Miért van osztva? (Mivel nem volt egy gyalogos az úton 3 óra és tartott az azonos távolságra óránként). Szóval, hány kilométert gyalogosok óránként? (Km) száma 4. jelzi, hogy eltelt 4 kilométer óránként egyes gyalogos. Ezt az értéket nevezzük sebesség.
Az arány azt jelzi, hogy milyen messze egy gyalogos halad óránként, ha átmegy az azonos távolságra 1 óra.
V: A gyalogos sebessége 4 km / h
Szóval, mi is áll a sebesség? Mi távolság gyalogos halad óránként, vagyis milyen messze egy tárgy elhalad egységnyi idő alatt.
Ezután megoldott számos problémát sebességgel meghatározása, amikor a távolság és az idő.
A kerékpáros volt az úton és 3 órán utazott abban az időben 36 kilométeres óránként vezetett azonos távolságra. Hány kilométert halad kerékpáros óránként?
Miután a gyerekek mutatták be a koncepció a sebesség, a tanár azt javasolja, hogy megoldja a problémát, amikor megállapította sebesség.
A kerékpáros volt az úton és 3 órán megtett távolságot 48 km. Milyen gyorsan mozgó kerékpáros, ha eltelt minden órában azonos távolságra.
Rövid rekord lesz végrehajtva táblázatos formában. Milyen értékeket említett probléma? (Sebesség, idő, távolság).
Mit mond a kerékpáros? (Ő volt az út 3 óra), amely az oszlop írunk le? (A t) Tudjuk a távolság, amely a megtett kerékpáros? (Tudom - 48 km) van írva egy oszlop? (S) Tudjuk sebessége ismert? (Nem), amint azt ebben a táblázatban? (Bejelentkezés „?” Kérdés) Ismételjük meg a feladatot jotting.
Képesek leszünk, hogy azonnal válaszolni a kérdésre, hogy a probléma? (Legyen képes) Milyen intézkedéseket? (Division) részlege, miért? (Ahhoz, hogy megtalálja a sebességet meg kell távolság osztva az idővel). Írunk a megoldás a problémára egy notebook. Miért az a sebesség? (16 km / h). Honnan tudtad? (48. 3 = 16 km / h). Jegyezzük fel a választ a problémára.
Ezután megoldott néhány problémát a sebesség meghatározásához. Miután ezt a következtetést. Hogyan lehet megtalálni a sebességet, amikor a távolság és az idő? (Meg kell távolság osztva az idővel).
Kerékpáros sebességgel halad a 16 km / h. Mi a megtett távolság kerékpáros 3 órán át?
Milyen értékeket említett probléma? (O sebesség, idő, távolság).
Távolsága Jelölje szegmens. Hány órát volt a kerékpáros utat? (3 óra), mit kell mondani a kerékpáros? (Ahogy mozgott a sebesség 16 km / h). Mit jelent ez? (Mi minden órában, amikor vezetett 16 km). Hány egyenlő részre osztja a szegmenst? (A 3 egyenlő részre). Hogy miért. (Mivel a pályák én 3 óra).
16 km 16 km 16 km
És most nézd meg a rajzot, és azt mondják, hogy mi ugyanazt a távolságot, hogy a kerékpáros hajtott 3 óra? (48 km) Hogyan találjuk meg? (16 * 3 = 48). Miért szaporodnak? (Mivel minden kerékpáros óra és 16 km-re a vezetési, és a vezetési 3 óra hosszat, azaz 16 kell venni 3-szor). Jegyezzük fel az oldat, és válaszoljon a problémát.
Arra a következtetésre jut a döntés után a három feladat, a rajz. Hogyan lehet megtalálni a távolságot, ha tudjuk, a sebesség és az idő? (Ahhoz, hogy megtalálja a távolság, meg kell szorozni a sebességet az idő).
A negyedik probléma megoldódott a vonatkozó összefoglaló rekordok asztalra.
Gyalogos volt 4h utat sebességgel mozog az 5 km / h. Milyen messze volt a gyalogos.
Milyen értékeket említett probléma? (V, T, S) hány órát volt a gyalogos útvonal? (4H). Egy oszlop írom ezt? (T), ami ismert a probléma? (Gyalogos sebességgel mozgattuk 5 km / h). Egy oszlop írom ezt? (A V) Tényleg tudni a távolság? (N), mint a táblázatban megadott? ( "?") Lehet megtudni? (Igen) Milyen intézkedéseket? ( "*"). Miért szorozni? (Ahhoz, hogy megtalálja a távolság, meg kell szorozni a sebességet az idő).
Szóval hogyan lehet megtalálni a távolságot, ha tudjuk, a sebesség és az idő? Ahhoz, hogy megtalálja a távolság, meg kell szorozni a sebesség az óra. 5 * 4 = 20 km. Jegyezzük fel az oldat, és válaszoljon a problémát.
Az autó sebességgel haladó, 60 km / h. Hány órát utazott egyenlő távolság 240 km?
Milyen értékeket említett probléma? (O sebesség, idő, távolság). Rövid rekord lesz a táblázat formájában.
Mit mond a távolság? (Ami autó megtett 240 km). Írunk a táblázatban. Mit mond a sebességet? (Mi az autó vezetés 60 km / h). Írja meg a táblázatban. Mi kérdezte a probléma? (Hány órát volt az út az autó?) Szerepelnek a táblázatban.
Mit jelent a sebesség?
Az autó vezetés 60 km óránként, és összesen 240 km. Mennyi időt töltött az autó egészen? Honnan tudtad? Miért?
Jegyezzük fel a probléma megoldására és a válasz. Miután a határozat 2-3 feladatok arra a következtetésre jut.
És most nézd meg az asztalnál, és azt mondják, hogyan találja az időt, ha tudod, hogy a távolság és a sebesség. Az ezt követő órák megoldotta mind a három típusú feladatok tarkított.
1.3. Megoldás alkatrész feladatok egy ellentétes mozgást,
az ellenkező mozgás
Tanítási módszerek problémamegoldás „hogy egy ellentétes mozgást” alapul világos megértése a diákok a sebessége egyenletes mozgás, amelyek meghatározása és össze ebben a témakörben kijelölt órákat. A megfigyelések alapján az élet fordul és illusztrált értelmében az „egymás felé mozdulnak”, „vprotivopolozhnyh irányban”, „balra egyszerre két punktovi találkozott ...”, stb
Miután a vizuális színrevitele minden esetben célszerű, hogy a tanulók fokozatos szövődménye a gyerekeket tanítani egy diagram az ilyen problémák „darabokban”. És próbáljuk aránya hosszuk, attól függően, a sebesség és a távolság (különösen a „látni”) távolságok. Például, ha egy vonat sebessége 60 km óránként, és a többi - 45 km / h, az első nyíl hosszabbnak kell lennie, mint a második, stb Ha van egy film csík „a mozgás feladatok” a rendelkezésére álló tanárok, akkor lehet használni, ebben a leckében. Csak miután egy sor előkészítő munka irányítása alatt a tanárok úgy a problémát №464 (vagy hasonló). Mielőtt foglalkozik ezzel a problémával az osztályban, ismételje meg, és visszaállítja a következő információkat szem előtt: összefüggés a sebesség, a távolság és az idő (mint az egyik három érték kifejezhető a másik kettő?), A helyzet, amelyben „két gyalogos ugyanabban az időben kimentek ...” Akkor, alá vont hallgató a tanár felügyelete és részvétele az feladata poring №464 (1).
Két gyalogos egyidejűleg egymás felé két falu és találkozott 3 óra alatt. Eredeti gyalogos séta sebességgel 4 km / h, a második - 5 km / h. Keresse meg a távolságot a falu.
Egy ilyen részletes vizsgálat tanítja meg a gyerekeket, hogy „olvasni” áramkört. Ezután a tanár kérheti az osztály: „Hogyan lehet megoldani a problémát?”
Talán az egyik tanítványok a következő érv: „A találkozót tartottak, hogy egy gyalogos 4 * 3 = 12 (km), és a másik - 5 * 3 = 15 (km). A távolság a falvak lesz 12 + 15 = 27 (km).
Ha egy ilyen diák nem találták meg, és kínál a gyermekek hiányos vagy hibás, a tanár tartja, a vezető kérdések, hogy a munka az osztályban, fokozatosan vezette összeállításánál a feladat a kifejezés:
Keresse az értéke ennek a kifejezésnek, megkapjuk a választ: a távolság a falvak 27 km.