Online Spearman korrelációs együttható kalkulátor

A számítási módszerét Spearman korrelációs együttható valójában le nagyon egyszerűen. Ez ugyanaz a Pearson-féle korrelációs együttható. Csak célja nem a maguk számára a mérések eredményeit valószínűségi változók, és rangjukat értékeket.

Továbbra is csak hogy megtudja, hogy egy ilyen rangú érték és mindez miért van szükség.

Ha az elemek egy variáció szám rendezett növekvő vagy csökkenő sorrendben, a rangsorban az elem lesz a szám a rendezett sorban.

Tegyük fel például, hogy van egy variáció számát. Nézzük rendezni elemében csökkenő sorrendben. 26 rangja 1, 21 - 2. helyezett, stb Variációs sorozat rang értéke az alábbiak szerint alakul.

Vagyis, ha kiszámítjuk a kezdeti együttható Spearman-sorának variációs alakítjuk változási sor rangot értékeket, majd a hozzá Pearson képlet érvényes.

Van egy finomság - rank ismétlődő értékeket vesszük az átlagos soraiban. Ez azt jelenti, számos számos rangot érték fog kinézni, mint az első eleme a 15 rangja 2, és a második - 3. helyezett, és.

Ha nem ismétlődő értékeket, azaz az összes értéket a rang sorban - ez a szám 1 és n között, a Pearson-féle formula lehet egyszerűsíteni

Ja, és mellesleg ezt a képletet a leggyakrabban azok a képlet együttható Spearman.

Mi a lényege az átmenet az értékeket magukat rang értékek?
De az a tény, hogy a nyomozó rang korrelációs értékeket lehet beállítani, valamint a függőség a két változó írja le egy monoton függvény.

együttható tábla jelzi a kommunikáció iránya a változók között. Ha a jel pozitív, az Y értékek növelik a növekvő értékek X; ha az előjel negatív, akkor Y értékek általában csökken a növekvő értékek X. Ha az együttható értéke 0, akkor nincs tendencia. Ha az együttható értéke 1 vagy -1, a korreláció x, és Y a forma egy monoton függvény - azaz, a növekvő X, Y is növeli, vagy fordítva, a növekvő X, Y csökken.

Ez azt jelenti, ellentétben a Pearson-féle korrelációs együttható, amely csak felfedi lineáris kapcsolat egy másik változót, Spearman korrelációs együttható tudja azonosítani monoton függőség, ahol közvetlen lineáris összefüggés nem mutatható ki.

Fogom elmagyarázni a példát. Tegyük fel, hogy vizsgálja meg a funkciója y = 10 / x.
Jelenleg a következő mérések eredményeit az X és Y
, , , ,>
Ezekhez az adatokhoz, a Pearson-féle korrelációs együttható egyenlő -0,4686, azaz a gyenge kötés vagy nincs jelen. De szigorúan Spearman korrelációs együttható értéke -1, mert azt sugallja, hogy a kutató, hogy Y egy erősen negatív monoton függés X.

Online Spearman korrelációs együttható kalkulátor

Kapcsolódó cikkek