Mit jelent az, binomiális eloszlás - a szavak jelentését
Keresés értékeit / szavak értelmezése
Rész nagyon könnyen használható. A javaslat doboz elég belépni a kívánt szót, és mi ad egy listát annak értékeit. Szeretném megjegyezni, hogy a weboldal különböző forrásokból származó adatok - enciklopédikus, értelmes, szóalkotás szótárak. Itt is megismerkedhetnek példa a szavak használatát megadott.
Binomiális eloszlás (Bernoulli-eloszlás) valószínűségi eloszlása az előfordulások számát egy esemény ismételt független vizsgálatok, ha a valószínűségét az esemény minden vizsgálatban jelentése p (0, 1). Vagyis a számát. előfordulását az események egy valószínűségi változó szedési értékek m - 0, 1, 2 n valószínűségekkel Pn (m) = CPM (1-p) n-m, ahol C - binomiális együtthatók (lásd binomiális tétel.).
enciklopédia
A valószínűségi eloszlását előfordulásai esemény ismételt független kísérletek. Ha minden egyes próba a valószínűségét egy esemény p, 0 £ p £ 1, az m számú előfordulásának ez az esemény n független vizsgálatokban egy véletlenszerű változó, amely veszi értékek m = 1, 2 n valószínűségekkel
ahol q = 1 ≈ p, egy ═≈ binomiális együtthatók (innen a név B. o.). A fenti képlet néha a Bernoulli formula. Az elvárás és szórása m, amelynek B. R. egyenlő, mint M (m) = np, és D (m) = NPQ, ill. Nagy n, azáltal, hogy a Laplace-tétel. B. p. közel normális eloszlást. és ez a gyakorlati alkalmazása. A kis n meg kell használni táblázatok B. p.
Irod Bol'shev LN Smirnov NV asztalok matematikai statisztika, M. 1965.
>> a binomiális eloszlás valószínűségszámítás - eloszlása a szám a „sikerek” egy szekvencia-n független véletlen kísérletek. oly módon, hogy annak valószínűsége, hogy „siker” mindegyik állandó, és egyenlő p.
Átírás: binomial'noe raspredelenie
Visszafelé szól: einelederpsar eonlaimonib
A binomiális eloszlás alkotják 25 betű