Többszörös korrelációs együttható

Többszörös korrelációs együttható

Többszörös korrelációs együttható jellemzi a lineáris összefüggés szorosságát egy változó, a másik meg a figyelembe vett változók.
Különösen fontos az a számítás a többszörös korrelációs együttható, amiből a változó y faktoriális x1. x2, ..., xm, a képlet meghatározására, amelynek általában formájában

ahol # 8710; R - a meghatározója a korrelációs mátrix; # 8710; 11 - kofaktor az elem ryy korrelációs mátrix.
Ha figyelembe vesszük, csak két faktoros jellemző, lehetséges, hogy az alábbi képlet többes korrelációs együttható:

Építése több korrelációs együttható csak ajánlott abban az esetben, ha a parciális korrelációs együtthatók szignifikánsan emelkedett, és a kapcsolat a megjelölés és a hatékony tényezők szerepelnek a modellben valóban létezik.

A determinációs együttható

Az általános képlet: R 2 = RSS / TSS = 1-ESS / TSS
ahol RSS - magyarázatai eltérések négyzetösszegét, ESS - megmagyarázhatatlan (maradék) összege négyzetes eltérések, TSS - teljes összege a négyzetes eltérés (TSS = RSS + ESS)

,
ahol rij - közötti korrelációs együtthatók a párosított regresszorok x i és x j. egy ri0 - korrelációs együtthatók között párosított regresszor x i és y;
- a korrigált (normalizált) a determinációs együttható.

A tér a többszörös korrelációs együttható az úgynevezett többszörös determinációs együttható; azt mutatja, hogy mennyi a kapott változó y variancia magyarázható befolyása faktor x1. x2. ..., xm. Megjegyezzük, hogy a képlet az együttható arány meghatározását a hatékony maradék jellemző, és a diszperzió teljes lesz ugyanazt az eredményt adja.
Többszörös korrelációs együttható és a determinációs együttható változik 0-ról 1 Minél közelebb 1, a kötés erősebb, és ennek következtében a pontosabb regressziós egyenlet épített a jövőben, leírja a függőség y x1. x2. ..., xm. Ha az érték a többszörös korrelációs együttható kicsi (kevesebb, mint 0,3), az azt jelenti, hogy a kiválasztott sor faktoriális jelek nem elég hatékony leírja variáció jellemzője, vagy kapcsolat a faktor és hatékony változók nemlineáris.

Többszörös korrelációs együttható kiszámítása a számológép. A jelentősége többszörös korrelációs együttható és a determinációs együttható segítségével ellenőrizzük Fisher-teszt.

Melyik szám lehet értéke a többszörös determinációs koefficiens:
a) 0,4;
b) 1;
b) -2,7;
g) 2,7.

Többszörös lineáris korrelációs együttható 0,75. Hány százaléka a változás a függő változó elszámolni a modell, és mivel a tényezők hatását x1 és x2.
a) 56,2 (R 2 = 0,75 2 = 0,5625);
b) 75,0;
c) 37,5

Kapcsolódó cikkek